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Homogeneity in a Metal Wire under Melting1

S. I. Tkachenko,2,3 K. V. Khishchenko,2 and P. R. Levashov2

Results of numerical simulations of the melting wave in a tungsten wire
heated by a high-power nanosecond current pulse are presented. To take into
account the hydrodynamic effects under melting, a semiempirical multiphase
equation of state for tungsten is used. The structure of the melting wave at
different parameters of the heating is studied, and a theoretical evaluation
for the thickness of this wave, δm, is proposed. The homogeneity of the dis-
tribution of parameters over the wire can be expected in the case of δm �a0,
where a0 is the initial radius of the wire. The melting wave can be consid-
ered as a discontinuity of thermophysical properties of the solid and liquid
phases at δm �a0.

KEY WORDS: equation of state; high-power current pulse; homogene-
ity; melting wave; thermophysical properties; tungsten; wire explosion.

1. INTRODUCTION

Fast heating of metal wires by a high-power current pulse is a common
way for investigations of thermophysical properties of liquid metals at high
pressures and temperatures [1]. Parameters of the circuit and the heated
wire are usually chosen so that the skin-layer thickness is greater than the
initial radius of the wire. Therefore, one can assume that parameters of the
specimen possess homogeneous radial distribution during heating of the
wire. Melting of the wire is initiated at the outer boundary because the
energy barrier of heterogeneous nucleation of liquid on the solid specimen
surface equals zero [2, 3]. This phase transition does not have to lead to a
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strong change of matter properties. In this work we have investigated the
melting wave structure and the distribution of thermophysical properties of
metal under subsecond explosion of tungsten wires.

2. MELTING WAVE

There are many modern investigations of the melting process under
the influence of powerful fluxes of energy (see, for example, Refs. 4 and 5),
but studies of the inner structure of the melting wave have not been car-
ried out. Commonly the melting wave is considered as a discontinuity of
thermophysical properties [6]. Nevertheless, it is reasonable to assume that
the inner structure of the melting wave for the case of a small size spec-
imen would be important. In this case the size of the specimen would be
either comparable with or greater than the thickness of the melting wave.
Under these conditions, it is necessary to take into account that a two-
phase solid–liquid mixture in the melting wave should be described as a
heterogeneous medium with effective properties.

Let us explain how we understand the idea ‘melting wave.’ This object
has front and rear surfaces. The front of the melting wave is a bound-
ary between the solid and two-phase solid–liquid mixture states of matter,
whereas its rear surface is a boundary between the two-phase solid–liquid
mixture and liquid states. The thickness of the melting wave, δm, is the dis-
tance between the front and rear surfaces; it can be much greater than the
specimen size in the direction of the wave propagation.

For the case of melting of the wire heated by a large power current
pulse, the nonhomogeneous distribution of parameters in the wire will be
more marked for small values of the thickness, δm �a0, where a0 is the ini-
tial radius of the wire. The distribution of parameters over the wire will be
practically uniform during the melting process at δm �a0.

If the distributions of density and temperature over the wire are
homogeneous, the pressure can be written as follows:

P(r)=P(a)+ 1
4µj2a2

(
1− r2/a2

)
, (1)

where a is the wire radius, P(a) is the ambient pressure, µ is the absolute
magnetic permeability, and j is the current density. Using the technique
presented in Ref. 7, we can obtain for the melting temperature increase
along the wire radius,

∆Tm = (dTm/dP )|dP |= 1
2 (dTm/dP )µj2r dr, (2)

where dTm/dP is the temperature difference versus pressure along the
melting curve. From the energy balance cρdTm/dt = j2/σw (here c is the
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specific heat, ρ is the density, and σw is the electrical conductivity), the
velocity of the melting wave front vm can be estimated according to

vm = dr

dt
= 2

µr σwcρ (dTm/dP )
. (3)

We can see that the melting wave velocity depends on the distance from
the wire axis and vm → ∞ at r → 0. In the vicinity of the axis, bound-
ary conditions of the symmetry are realized and then �Tm → 0. There-
fore, volumetric isothermal melting with infinite propagation velocity takes
place in this region. Such a conclusion about infinite propagation veloc-
ity is valid for any phase transition waves in the vicinity of both the sym-
metry axis in a cylindrical geometry and the symmetry plane in Cartesian
geometry. These waves do not transfer energy or mass; therefore, it is not
unusual that their velocities can reach very large values. If the distribution
of the density or temperature over a specimen would be nonhomogeneous,
the velocity of the phase transition wave would be limited, for example, by
heat or magnetic field diffusion. Therefore, the velocity of such waves can
be very small [8].

The time necessary for the melting process to be completed in a given
specimen layer can be estimated from the ratio of the melting heat and the
power of energy input,

τm = σwρλ

j2
, (4)

where λ is the specific heat of melting. Following that, the thickness of the
melting wave can be determined as

δm =vmτm = 2λ

µj2r c (dTm/dP )
. (5)

Thus, we can determine the condition of homogeneity of the distribu-
tion of wire parameters along the radius during melting, δm �a0. For eval-
uation of δm from Eq. (5), one can take r ∼a0, j ∼ jm, and c∼ cm, where
jm and cm are typical values of the current density and specific heat in a
metal just before melting. The melting wave can be considered as a dis-
continuity of thermophysical properties of the solid and liquid phases if
the condition δm �a0 is valid.

To illustrate these theoretical evaluations, we carried out a numeri-
cal simulation of the melting wave in a tungsten wire heated by a high-
power nanosecond current pulse. As one can see from Eqs. (3) and (5), the
velocity and thickness of the melting wave depend on the thermodynamic
parameters of the substance as well as the heating power; therefore, in the
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simulations we used equation of state [9] and electrical conductivity [10,
11] models that adequately describe the thermophysical properties of the
substance.

3. MODELING

In this work we investigate the initial stage of the wire heating which
precedes an abrupt increase of the wire radius. Consequently, we do not
take into account the axial and azimuthal nonhomogeneous effects. These
effects will have influence upon the modeling results only at the later stage
of the process.

If the time for thermal relaxation of an electron and lattice is less
than the typical time of the process, we can assume that ion and elec-
tron temperatures are the same. In accordance with theoretical investiga-
tions [12], the time for energy relaxation under superfast heating is τ ∼1 ps
for most metals in a condensed state. These data are confirmed by exper-
iments on the interaction of a femtosecond laser pulse with metals [13].

As the Joule energy continuously affects the specimen during elec-
trical heating, the typical value of the ion-electron relaxation time under
such conditions can differ from that in experiments with short laser
pulses. In accordance with theory [14, 15], a difference of electron
and ion temperatures is insignificant for regimes with a typical time
τc �10 ns. For example, we can estimate this difference for a current density
j0 ∼0.1 TA · m−2,

αt = θ −T

T
∼ e2j2

0

6(σ0/l)2mev2
s ε0

∼10−3, (6)

where ε0 = 0.5(3neπ
2)2/3–h2/me = 3 × 10−19 J is the Fermi energy for

tungsten; T is the temperature of heavy particles; θ is the electron tem-
perature; θ ∼T ∼10 kK is the typical value of the wire temperature imme-
diately before explosion; l ∼ 1 nm is the electron free path; mev

2
s ∼ 10−23 J

is the kinetic energy of the electron moving with the sound velocity; me is
the electron mass; vs is the sound velocity; ne is the electron particle den-
sity; and σ0 = 0.7µ�−1 · m−1 is the electrical conductivity of liquid tung-
sten.

In this case the deviation from Ohm’s law is also negligible [14];

σ0 −σe

σ0
= π2

12
(kT/ε0)

2 (1+αt )
2 ∼10−2, (7)
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where σe is the electrical conductivity of the metal while taking into
account a difference of the electron and ion temperatures; k is the Boltz-
mann constant.

Thus, the one-temperature one-dimensional (1-D) magneto-hydrody-
namic (MHD) model [16] can describe the initial stage of a wire explo-
sion. Assuming that spatial disturbances of the wire form are small, we
can write the set of equations for simulating the resistive stage of the wire
heating in Lagrangian form,

dm

dt
=0, (8)

ρ
dv

dt
=−∂P

∂r
−

(
2µr2

)−1
∂

(
r2B2

ϕ

)
/∂r, (9)

ρ
dε

dt
=−P

∂ (rv)

∂r
+ r−1 ∂ (κr∂T /∂r)

∂r
+ j2

σw

, and (10)

d
(
µBϕ

)

dt
=

∂
[
(σwr)−1 ∂

(
rBϕ

)
/∂r

]

∂r
, (11)

where v,m,ρ, and T are the velocity and the specimen mass, density,
and temperature, respectively; ε(ρ, T ) and P(ρ,T ) are the specific internal
energy and pressure; Bϕ is the magnetic induction; σw(ρ, T ) and κ(ρ, T )

are the electrical and thermal conductivities; and j = (µr)−1∂(rBϕ)/∂r is
the current density. The heating current I =I (t) is determined by the equa-
tion describing the electric circuit,

d2(L I)

dt2
+ d(Rl I )

dt
+ I

C
=0, (12)

where L is the inductance; C is the capacitance of the capacitor; and Rl is
the resistance of the specimen. For the case δs �a, where δs is the thick-
ness of the skin layer, the value of Rl is calculated from the equation,

Rl(t)= l

[
2π

∫ a

0
σw rdr

]−1

, (13)

where l is the wire length. The initial and boundary conditions for Eqs.
(8)–(12) are the same as in Ref. 16.

We used a semi-empirical wide-range equation of state for tungsten
[9], which takes into account the effects of high-temperature melting and
evaporation. This multi-phase equation of state based on the model [17–
19] agrees with the collection of experimental data on static and shock
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compression as well as on adiabatic and isobaric expansion of the metal;
see details in Refs. 9 and 20.

The electrical conductivity of tungsten is defined by the semi-empirical
formula [10],

σw (ρ, T )=σ0
(ρ/ρ0)

δ

1+β (T −T0)
. (14)

We chose the parameters ρ0 = 19.224 g·cm−3, T0 = 293 K for the solid
phase and ρ0 = 17.2 g·cm−3, T0 = 3685 K for the liquid phase in accor-
dance with equation-of-state reference points at atmospheric pressure, σ0 =
20.6µ�−1· m−1, β = 6.5 kK−1, and δ = 1.76 for solid tungsten according
to experimental data [1, 10] and σ0 = 0.7µ�−1· m−1, β = 0.02 kK−1, and
δ =0.67 for liquid tungsten from data analysis [11]. The electrical conduc-
tivity of the two-phase state in the melting region is determined by

σef =νσs + (1−ν) σ1, (15)

where σs and σl are the electrical conductivities of the solid and liquid
phases, respectively, and ν is the mass concentration of the solid phase,

ν(ρ, T )= ρ−1
m (T )−ρ−1

ρ−1
m (T )−ρ−1

s (T )
. (16)

ρs and ρm are the densities of the solid and liquid phases on the melting
curve.

The thermal conductivity is calculated according to the Wiedemann–
Franz law,

κ(ρ, T )=kWFT σw(ρ, T ), (17)

where kWF = (π2/3)(k/e)2 is the Wiedemann–Franz constant.

4. NUMERICAL METHOD AND TESTING

We apply a finite-difference approximation for the set of Eqs. (8)–(11)
using common approximation techniques [21, 22] of the order O(τ +h2).
Thermodynamic parameters and the current density (ρ, T , σ, ε, j) were
placed into the cells and the velocity and magnetic induction (v,Bϕ) in the
nodes of the grid. We used an implicit scheme to avoid rigid limitation on
the time step.

To verify our computational method, we used a number of tests. We
simulated the movement of a piston in a van-der-Vaals medium with a
constant specific heat and compared the results with the self-consistent
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solution [23]. It was shown that the numerical solutions are in good agree-
ment with both the shock wave (piston pushed into medium) and Rie-
mann wave (piston pulled out from medium) [23].

In order to test our numerical method for the set of MHD Eqs.
(8)–(11), another test was developed. For the case of a slightly nonuniform
distribution of parameters over the wire, we can write as in Ref. 23:

ρ(r, t)= ρ̄(t)+ δρ(r, t), ε(r, t)= ε̄(t)+ δε(r, t), (18)

v(r, t)= rv̄(t)+ δv(r, t), Bϕ(r, t)= rB̄(t)+ δBϕ(r, t), (19)
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Fig. 1. Radial-dependent mass concentration of
the solid phase for (a) regime 1 from t = 19.8 ns
(upper curve) to 21.4 ns (lower curve) and (b) for
regime 2 from t = 10.2 ns (upper curve) to 10.8 ns
(lower curve). Time intervals between neighboring
curves are (a) 0.2 ns and (b) 0.1 ns.
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Fig. 2. Radial-dependent density of the wire for
(a) regime 1 from t = 19.8 ns (upper curve) to
21.4 ns (lower curve) and (b) for regime 2 from
t = 10.2 ns (upper curve) to 10.8 ns (lower curve).
Time intervals between neighboring curves are (a)
0.2 ns and (b) 0.1 ns.

where δρ(r, t)/ρ̄(t)�1, δε(r, t)/ε̄(t)�1, δv(r, t)/rv̄(t)�1, δBϕ(r, t)/rB̄(t)�1.
In this case at δρ(r, t)=0, δε(r, t)=0, δv(r, t)=0, δBϕ(r, t)=0, and B̄(t)=0,
the set of Eqs. (8)–(11) has the analytical solution,

ρa =ρd/(D +At)2, va =Ar/(D +At), Ta =Td

[
(D +At)2 −bρd

]−R/Cv

, (20)

where D,A,Td and ρd are the parameters [23], Cv is the molar heat capac-
ity at constant volume, and R is the universal gas constant.

We simulated two processes: 1-D radial compression (D/A < 0)
and expansion (D/A > 0) of a van-der-Vaals liquid cylinder. To present
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Fig. 3. Radial-dependent pressure in the wire for
(a) regime 1 from t = 19.8 ns (lower curve) to
21.4 ns (upper curve) and for (b) regime 2 from
t = 10.2 ns (lower curve) to 10.8 ns (upper curve).
Time intervals between neighboring curves are (a)
0.2 ns and (b) 0.1 ns.

comparisons of the numerical solution with the analytical one, we used the
following notations for local (the maximum value) and total (the sum over
all cells or nodes) discrepancies over the computational domain: δCf =
‖(fs −fa)/fa‖C and ∆Lf =‖(fs −fa)/fa‖L, respectively; fs and fa are the
simulated and analytical values of the corresponding function f .

Results of comparison for compression up to factor 10 are as fol-
lows: δCρ ∼ 10−11, δCT ∼ 0.05, δCv ∼ 10−11,∆Lε ∼ 0.06,∆L(mv) ∼ 10−11,
and ∆LE ∼0.06;E = ε +0.5ρv2 +Bϕ/8π is the total energy. Discrepancies
in the case of expansion up to a factor of four are as follows: δCρ ∼
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Fig. 4. Radial-dependent temperature of the
wire for (a) regime 1 from t = 19.8 ns (lower
curve) to 21.4 ns (upper curve) and for (b) regime
2 from t = 10.2 ns (lower curve) to 10.8 ns (upper
curve). Time intervals between neighboring
curves are (a) 0.2 ns and (b) 0.1 ns.

10−11, δCT ∼ 0.02, δCv ∼ 10−10,∆Lε ∼ 0.02,∆L(mv) ∼ 10−11, and ∆LE ∼
0.02.

The results of the comparisons confirm the reliability of the presented
model to simulate complex problems with a real equation of state for the
medium.

5. RESULTS OF SIMULATIONS

The computer simulation of wire heating by the large power current
pulse was carried out for the following parameters of tungsten wire and
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Fig. 5. The diagram, plotted as time versus
radius, for propagation of the front (a, c) and
rear (b, d) surfaces of melting wave into the
heated wire for regimes 1 (a, b) and 2 (c, d).
Time is counted off from the moment of the
beginning of melting.

the electric circuit: a0 = 12.5µm, l = 12 mm, L = 340 nH, C = 100 nF, and
U0 =20 kV (regime 1) and a0 =25µm, l =12 mm, L=340 nH, C =100 nF,
and U0 =200 kV (regime 2); U0 is the initial capacitor voltage. Parameters
of regime 1 correspond to experiments presented in Ref. 24 and param-
eters of regime 2 are chosen in order to increase the current rate value;
current rates are İ ∼60 and 600 A· ns−1 for regimes 1 and 2, respectively.

The calculated radial distribution of the mass concentration of the
solid phase, density, pressure, and temperature as a function of time are
shown in Figs. 1–4 for both regimes.

In Fig. 1 are presented the radial distributions of the mass concen-
tration of the solid phase for different moments during the melting pro-
cess. The melting wave thickness exceeds the radius of the heated wire
in both regimes; nevertheless, it can be assumed that δm � a0 in regime
1 and δm ∼a0 in regime 2. The divergences of the parameters along the
wire radius during melting in regime 1 are ∆ν ≈ 0.08,∆ρ/ρ ≈ 0.03, and
∆T/T ≈ 0.03 and the maximum pressure is Pmax ≈ 5.5 GPa; in regime 2
these parameters are as follows: ∆ν ≈ 0.26,∆ρ/ρ ≈ 0.11,∆T/T ≈ 0.1, and
Pmax ≈33 GPa.

According to Eqs. (3)–(5), δm1/a0 ∼ 40 and τm1 ∼ 1.4 ns for regime 1,
δm2/a0 ∼7 and τm2 ∼0.5 ns for regime 2, and vm ∼105 m·s−1 at the initial
moment of melting. Fig. 5 illustrates propagation of the melting wave into
the heated wire. One can see that numerical results are in good agreement
with theoretical estimations for τm and vm.
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It is clearly seen in Figs. 3 and 4 that the radial distributions of pres-
sure and temperature have similar shapes during melting. This correlation
of temperature and pressure at the phase transition can be explained by
the fact that these values are not independent along the melting curve.

6. CONCLUSIONS

An evaluation for the thickness of a melting wave δm in a wire heated
by a high-power current pulse is proposed. This parameter defines the con-
dition for the homogeneity of density and temperature distributions along
the radius of the wire during the phase transition, δm � a0. The melting
wave can be considered as a discontinuity of thermophysical properties of
the solid and liquid phases of metal at very high current densities only,
when δm � a0. Excluding the last case, the inner structure of the melting
wave should be taken into account when modeling the fast heating of a
wire.
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